New measure of the dissipation region in collisionless magnetic reconnection.

نویسندگان

  • Seiji Zenitani
  • Michael Hesse
  • Alex Klimas
  • Masha Kuznetsova
چکیده

A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron's rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Inner Structure of Collisionless Magnetic Reconnection

Magnetic reconnection is a driving engine of solar flares, stellar flares, and quite probably bursty events in high-energy astrophysical sites. The reconnection process is driven by a small-scale “dissipation region” surrounding the reconnection point (X-point), at which a plasma ideal condition breaks down. Recently, kinetic particle-in-cell (PIC) simulations have revealed that the electron id...

متن کامل

Structure of the dissipation region during collisionless magnetic reconnection

Collisionless magnetic reconnection isstudied using a 2 1/2-dimensional hybrid code including Hall dynamics and electron inertia. The simulations reveal that the dissipation region develops a two-scale structure: an inner electron region and an outer ion region. Close to the X line is a region with a scale of the electron collisionless kin depth, where the electron flows completely dominate tho...

متن کامل

The role of electron dissipation on the rate of collisionless magnetic reconnection

Particle simulations and analytic arguments are presented to demonstrate that the electron dissipation region, including the physics which breaks the frozen-in condition, does not affect the rate of reconnection in collisionless plasma. The result is a general consequence of the quadratic nature of the dispersion character of whistler waves, which control the plasma dynamics at small scales. Th...

متن کامل

Two-scale structure of the electron dissipation region during collisionless magnetic reconnection.

Particle-in-cell simulations of collisionless magnetic reconnection are presented that demonstrate that reconnection remains fast in very large systems. The electron dissipation region develops a distinct two-scale structure along the outflow direction. Consistent with fast reconnection, the length of the electron current layer stabilizes and decreases with decreasing electron mass, approaching...

متن کامل

Chaos-induced resistivity in collisionless magnetic reconnection.

Magnetic null points act as scattering centers where particles describe chaotic orbits and the mixing effect increases the kinetic entropy. In an open system where convection of particles into/from the chaos region exists, the saturation of the entropy can be avoided, and continuous dissipation is achieved. The chaos-induced collisionless resistivity of ions enables fast magnetic reconnection. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 106 19  شماره 

صفحات  -

تاریخ انتشار 2011